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Criteria of stationary and oscillatory instability of a plane horizontal layer of a binary 

mixture bounded by solid surfaces are derived. Results of calculations by the Bubnov- 
Galerkin method are presented in the form of a stability diagram. It is shown that the 

criterion of convection onset is altered when the pressure gradient is taken into account 
in a binary system in equilibrium, particularly for a zero diffusion stream. 

A new stability criterion, similar to that of Schwarzschild for a pure fluid, is obtained 

by taking into account pressure gradient effects on stability in the neighborhood of the 
line of critical points of mixing in a binary mixture. 

1. The conditions of convection onset in a mixture with a nonuniform distribution of 

temperature and concentration differ considerably from those for a pure fluid. As shown 
in [l] on the example of stability of a plane vertical layer, two kinds of instability rela- 
ted to monotonic and oscillatory perturbations are possible in a mixture. This conclusion 
is confirmed in 12, 3~. In all these investigations an exact solution of the nonstationary 

equations of small perturbations was made possible by the selection of either a simple 
form for the investigated region or of suitable boundary conditions. 

Let us consider the stability of mechanical equilibrium of a plane horizontal layer of 

a mixture bounded by solid surfaces. The temperature and concentration gradients are 
assumed to be constant and vertical 

VT0 =- Aoy, vCo =- BOT (i.i) 

Here y is the unit vector directed vertically upward along the z-axis. 

Eliminating pressure and horizontal velocity components from the dimensionless equa- 
tion of convection in the mixture, taking into account thermal diffusion and diffusive 

thermal conductivity [4], and assuming (by virtue of the problem unboundedness in hori- 
zontal directions) that the dependence on horizontal coordinates is of the form erb 
where k is the two-dimensional wave vector in the ZY -plane, we obtain hr the am&tudes 
of vertical velocity V, E f (z, t), temperature T’ m ‘F (z, t) , and concentration C’ s 

= E (Z, t) (02 - k2)-$ = (De - k*)s f - R,@r - R,kZE 

ar 
PT,, =f+(i+a~)(D~-kk2)r+at(D2-k~)~ (1.2) 

We select the following units : the height of the (fluid) layer 1 for length ; P/v for 
time ; x / I for velocity ; A$ for temperature, and B,Zx / D for concentration 
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Nh2D 
a1 = - 

x ' 

R = BoP2d4 
c VD 

Here P, and P, are the Prandtl and Schmidt numbers ; R, and Re are’ the temper- 
ature and diffusion Rayleigh numbers; x, D and- kTD are the coefficients of thermal 

diffusivity, diffusion, and thermal diffusion, respectively; N is the thermodynamic coef- 
ficient ; cp is the specific heat at constant pressure ; p is the chemical potential; fix 
and BZ are the coefficients of thermal and concentration expansion, respectively. 

Boundary conditions at the solid surfaces are of the form 
f=Df=t=E=o for 2 = *la (1.3) 

Assuming that the dependence of the solutions of Eqs. (1.2) is of the form eat, we 
multiply each of the equations by f (z), z (z) and E G), respectively, and integrate from 

--l/z to ‘18 . As the result we obtain for the amplitude of perturbations a system of 

homogeneous linear algebraic equations. Equating the determinant of this system to 
zero. we obtain for the decrement a’the characteristic equation 

(13 + s,a2+ S2a + s, = 0 (1.4) 

where coefficients s,, sa and S, are expressed in terms of the problem parameters. 
From the theory of algebraic equations [S] we know that the condition for the existence 

of only negative real roots of the polynomial (1.4) is 

s, = 0 (1.5) 

while that for the existence of a pair of purely imaginary roots (i. e. the condition of 

indifferent oscillatory equilibrium) [5] is 

s, > 0, s,s2 - s3 = 0 (1.6) 

The characteristic frequency of indifferent oscillatory equilibrium is then 

02 = As2 (1.7) 

III the case of stationary and oscillatory instability the relationships for the criteria 

R, and R, are derived from conditions (1.5) and (1.6). They are 

(I+ a) R(Ts) + (1 + al + al/a) R(‘) = TO c (a = - hP2l P1) 

P,l~p~p,+(1+ 4Pe - aPT] R(TO) + P, [TP,P c + P - ulPc / al RL”) = c 

= r;l [PT + (1 5 al) PC1 [(I + TPJ (1 + TPT) + w,PJ (13 

r. = V. to2 - k212fl if, W2- k212 f I [$ f,J 

If> q ’ r = - k2 [f. tJ [f, P -w fl 

it,* q (1 - a2) zI( 
‘I. 

Tl = - ka[f,(D*-k2)f] ’ ‘= k2 ’ 

where superscripts (s) and .(O) relate to stationary and oscillatory instabilities, respect- 

ively. 
The straight lines in (1.8) intersect in the R,R,-plane at the point determined by 

coordinates 
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R,' = - r;’ [I + TPT + T (I+ al) PC1 alI a + [(I + al) (1 + v, + -pd,) + relets 

PT (I+ a) - P,(1+al+ai/a) 

R; = y;’ 
(1 + VT + vp,) + a [I+ VT + (I+ al) PC1 

PT(l+a)-pP,(l+al+alla) (1.9) 

The frequency of indifferent stability oscillations expressed in terms of R$?)and Ri._is 

@a= ( ‘;;;kf5)2Tl (l+nl+al~a)P,--l+a)P~ (Ry)_R.) 

pT hPcpT + PT - P,al / a) 

(l.lo) 

(and similarly in terms of ‘R.$“) and A,*): 
So far the exact solution was used in me analysis and derivation of all results on the 

assumption that functions f, r and 5 are exact solutions of the system of equations(U). 

For given physical constants and parameters PT, 4,. al, 4 and R, the stationary and 
the oscillatory Rayleigh numbers R,, are determined by the stability conditions (1.8) as 

functions of the wave number k. 
To determine the minimum value of RT (k,) which, in fact, is the criterion of convec- 

tion instability and k. is the periodicity in the horizontal plane, it is necessary to cal- 

culate the values of integrals ( l ). For the approximate calculation we use the Bubnov- 
Galerkin method with the same approximating functions for both the stationary and the 

oscillatory instability. 
The expressions of criteria (1.8) generally contain many parameters, which complicates 

the analysis and computations, hence only a few particular cases will be considered. 

2. In the equations of convection in a binary mixture we shall neglect the overlap- 
ping effects of,thermal diffusion and of diffusive thermal conductivity (J. = 6); The 
conditions of monotonic and oscillatory instability are then written as 

Rg) + Rp) = 70 (2.1) 

pc” (I+TT PT) R(TO) + P; (I+ yPc) RF) = ‘f;’ (PT + PC) (1 + TPc) (1 + yP,) 

The coordinates of the bifurcation point -in the RGc -plane are 

i+rp 
R;=-T;‘~*, 

i+7p 
R&;‘d 

T c 
(2.2) 

and the frequency of indifferent stability are defined by 

(2.3) 

The results of calculations for various ratios of P, / P, = x / D are shown in Fig. 1, 
where straight lines l-5 are branches of oscillatory instability for P,=Z, 5,10,0.05,0.01, 
respectively. (with P, = 1). It will be seen from the stability diagrams that the lines 
are similar to those obtained in cl]. The method and the analysis of calculation are 
given in the Appendix. 

3, It has been assumed so far that the constant gradients Aoof temperature and B, 
of concentration which define, respectively, the thermal and the diffusion streams q and 

l ) Obviously R, may be considered as given and the critical value of the diffusion 
Rayleigh number calculated R,.. 
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j , are independently specified. However in experiments the conditions are in the main 
s&h that j = 0: In that case the gradients 

Ao and B, are interrelated (the heat flux q 
is then nonzero and is determined by the 

.-6 

- -4 

Fig. 1 Fig. 2 

conditions of heating) 
PT% = aR,P, (or hAo = --B,) (3.1) 

The critical Rayleigh numbers for monotonic and oscillatory instability are then 
defined by 

PT 

R(TS) = ” (pT + a,Pc) + a [PT + (i + al) PC] 

R(TO) = y-1 
PT + o+ a,) PC 

’ PcZil+~(i+@PT] 
[(i + yp,) (i + ypT) + Tn,P,] 

(3.2) 

Figure 2 shows @) and R(O) T as functions of the thermal diffusion paramiter a for 

constant P,, P,, aI (PT = P, = a, = 1). The curves of R$@ and R$?) intersect at 
a = a* with a* defined by 

CL* zz - 
(PT +a,P,)(i+TP, +P~Pc)+TalpCa 

lPT + (I + ul) PC1 (I + yp, + TalPC) + r (I + al) pC (3.3) 

The frequency of indifferent stability oscillati_ons 

[f. $1 k2 

o2i= ( [Tk’ Tkl ) 

s LpT + (I + al) pC] (I + yp, + T”lP,) +r (1 + al) pC? 

PCs& [I + 7 (i + 31) pTl 
(9 - a) (3.4) 

vanishes at the point of bifurcation (3.3). 

It follows from (3.2) that the vertical lines 

a = an, CL = aa &Jr= -. 
PT+(l+al)Pc ’ “- --!1+&-)) (3.5) 

are asymptotes: the first is that of the two branches of the hyperbola defining the mono- 
tonic instability (the axis of abscissas is the second asymptote), and the second is that of 
the oscillatory instability branch, i.e. this branch is bounded by the bifurcation point a* 
on one side and on the other by the asymptote a = a,_ 
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The instability relative to monotonic perturbations is deflned by-two branches-and can 
occur with heatlng from below, as well as from above: 

for CE > ao the upper branch R,P) > 0 corresponds to heating from below; 
for a <‘%J the lower branch R,P) < 0 corresponds to heating from above. 

The analysis of calculation is given in the Appendix. 

4. One of the assumptions made in the derivation of Eqs. (1.2) was that of smallness 
of the pressure gradient in a binary mixture, There are, however, cases in which, as will. 
be shown in the following, this assumption is unacceptable, since the pressure gradient 
effects become of the same order of magnitude as those of temperature and concentra- 
tion. 

In such cases the equations of convection in a binary mixture with the pressure gra- 
dient taken into account only in the equilibrium state, written in dimensionless variables, 
are of the form aV 

-=- 
dt ‘Frp’+AV+-(RTT’+~,C’)v+ @++‘divV 

8T’ 
4 at = (1 - xo) Vy + (1 + al) AT’ + asAC’ 

W 
P E-Vu+ %AT’+AC’ c at 

div V 

Here, as in the equations of convection for a pure compressible fluid, we have the 
Schw~~chiid criterion 310 and, also, three new parameters IL,, 1Lo and I$ which define, 
respectively, thermal expansion, compressibility and expansion of the binary mixture 
resulting from the change of concentration. 

After transformation, using, as previously, the variational method, we obtain a system 
of equations the analysis of which with respect to stability by the method of Routh-Hi- 
vitz yields in the general case the condition of monotonic and oscillatory instability{~ 

Let us now consider the case - most interesting from the experimental point of view 
- in which the gradients A0 and B, of temperature and concentration, respectively, are 
bound at eq~i~bri~ by the condition j = 0. Taking into account the pressure gradient, 

*) The terms - odd with respect to z - appearing in the equation of motion are small 
owing to the smallness of parameters L,, I&, L,. In the following we take into consider- 
ation only those parameters which have singularities in the neighborhood of the diffusion 
line, and, since &, #+Ss and (8~ I &J)~.~ do not have such singularities, the result will corre- 
spond to the compressibility being taken into account only in the thermal conductivity 
equation. 
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we have 
& + IL.40 = -gpe I pc (p, = @p I w*, Tl 

or in dimensionless form 
P,Rc = aPcR, - ePT, 

kw)2 
e=yDll 

(4.3) 

For monotonic and oscillatory perturbations the expressionscfor the critical Rayleigh 

numbers are in this case of the form 

R(Tg)=p -r0+e.(l+n1+al/~) 
T It1 - &,I pT + alPcl + a lPT f (I + al) pcl 

R’To’= + (iPT + (I + a,) pcl [(I + Tpc) (I + Tp,) + 7alPc] + 

+ ePT bpopT + pT - al PC / a)] 

F = 11 -k (1 -I- a) TPTI - x0 (I i- al f ypT) 

The frequency of indifferent stability oscillations are 

o2 = ( [:;k~~~~)z (aI* j-;;~@2~----lr) 

Here a,* and as* are bifurcation points 

(4.4) 

(4.5) 

Cl;,= -mf i m2- heylPTPcal 

2n 

m = (I - id ilPT + (I f ‘II) PC1 hlflT - 1 - -f lPT + alP,)1 + p, (I + TpT)l + 
+ & filePTs (1 - ypc) - al ‘, i1 + yp, + 7 (I + al) pcl) (4.3) 

n = yle.PTa - 7 IPT + (I + al) Pcla - ipT + (I + al) pc - ypcpTl 

(m and n are of the same sign and aI* < 0, as* < 0, aI* < c&l). 

It is seen from (4.4) that the vertical lines 

a=aoand a=a, 

( 
ao=-(f---0) (I++-).+* 

all = - 
(1 - x0) p, + alp, 

pT + ti + al) pc > (4.7) 

are asymptotes: the first is that of the two branches 

defining monotonic instability, the second is that of 
the two indifferent oscillatory instability branches 
emanating fPom the two different bifurcation points 
aI* and &* (Fig. 3). Thus in this case both the oscil- 
latory and the monotonic instabilities are possible 

Fig, 3 
with heating from below and from above. 

6. The expressions for the conditions of convection 
onset in a binary mixture contain derivatives of physical magnitudes which in the vici- 
nity of the diffusion line have singularities. Hence the convection criteria can substan- 
tially vary in the critical region. The critical line is defined in terms of p. T, C @gas 
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follows : 
= 0, 0 (5-i) 

In the critical region 
T-T* 

t= T, 

Here T, (JJ) is the critical temperature of diffusion along the line of critical points 

at fixed pressure p. In accordance with the definitions 

a- D- 

Let us rewrite the derived criteria of convection onset, taking this into consideration 

and denoting by subscript (a) the thermodynamic parameters away from T, . 

In the general case from (1.8)-(1.10) we obtain for t 4’0 the following asymptotic 
expressions : 

(a) = To (I + ‘1) (I + al + TP,) 

(5.2) 

R T* = rOti + al) , 

Neglecting the overlapping effects, we obtain from (2.1)-(2.3) 

The monotonic instability condition (5.3) shows that the admissible gradient of con- 
centration ReW - t + 0 , consequently the branch of monotonic instabiliv degenerates 

-----T c 

Fig. 4 Fig. 5 

in the R,R,-plane into point R,(‘) = yO, i.e. we have the condition of stationary insta- 

bility in a pure fluid. The oscillatory instability branch begins at point RT* = yo, 

R,+ = 0 (T = T,)a.nd occurs for R,(O) < 0 andRT(0) > v. (Fig.4). The .most interesting 
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case (from the point of view of comparison with expreimental data) isthat-of i = 0 . 
In that case .for the monotonic and. the oscillatory Rayleigh numbers.and for the frequency 
of indifferent stability oscillations in the neighborhood of the critical diffusion line in a 

binary mixture we obtain from (4.4)-(4.6) the expresions 

@?) = PT (e / ape )(a) + 7;’ 
(1 $- al) (1 -t al -t ypT) 

'T (“‘0 )(a) 
t, o-jti-0 

(5.4) 

Thus both the oscillatory and the monotonic Rayleigh numbers, although varying to 
different laws, tend to the same constant P, (E / aP,)c.; when approaching I’, (Fig. 5). 

Since, however, simultaneously o - 0, there remains on the line of critical points only 
the stationary instability with the critical Rayleigh number 

R$) = P,. (e/ aP,)(,,, or 
.&Jh 

@E-_-=1 

i. e. a new criterion appears at the critical point of a binary solution. 
If, on the other hand, the pressure gradient in the equilibrium state is taken into account, 

then (3.2)-(3.4) yield an entirely different result 

R(T8) - t*, R(TO’ Y t, a2 = ( L;;hIk;ky )’ (y)‘($ - 1) (5.6) 

i.e. both kinds of instability are present but the values of criteria tend to vanish with 

the approach to the critical point. This shows that the criterion of convection onset is 

considerably altered when the effects related to pressure gradient in the critical region 
of a binary solution in equilibrium are taken into account. 

This is similar to the case of a pure fluid [7], when compressibility is taken into con- 

sideration only ln the equations of thermal conductivity (only in equilibrium). In this 

case the critical Rayleigh number in the neighborhood of the liquid-vapor critical point 

does not tend to zero but to a constant defined by the Schwarzschild criterion Xo. 
In a pure fluid this is related to compressibility characteristics in proximity to T,, 

while the singularity in the critical region of a binary mixture has a corresponding 

susceptibility uC-‘. This criterion also defines the convection instability in binary mix- 

ture layers of considerable heights similarly to the Schwarzschild criterion in the case 

of pure fluid. 
It should be pointed out that here we have considered only the critical point of mix- 

ing, where the compressibility of a binary mixture is low. 
However, as shown in [8]. the compressibility of a binary solution also has a singularity 

along the line of critical points of evaporation of infinitely diluted solutions and in the 
neighborhood of that line intersection with the azeotrope. This makes it necessary to 
take compressibility systematically into account ln the equations of hydrodynamics and, 
because of the hydrostatic effect, the dependence of the coefficients in the equations on 

coordinates, as was done in the case of a pure compressible fluid in [9]. 
Appendix. The numerical calculation of integrals in expressions for the problem 

eigenvalues is carried out by the Bubnov-Galerkin method with the substitution of certain 
approximating functions satisfying the problem boundary conditions for the exact solu- 

tions of equations. 
In the case considered here even the second approximation (two-term expansion) to 
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the solution of the oscillatory-instability problem_presents _coM&&Ldifficulties. The 
characteristic equation (1.4) instead of being cubic becomes then one of the sixth power, 
which leads to a very cumbersome expression for the related condition of oscillatory 
instability. 

Here, as in the case of a pure fluid, the condition of monotonic instability is not Com- 
plicated, since the sixth-order determinant & reduces to a third-order lattice determin- 
ant from which follows condition (1.8) but with a different right-hand side which coin- 
cides with the corresponding expression for a pure fluid. 

Thus. in the case of monotonic instability of a binary mixture, the use of approximat- 
ing functions j1 = (1 - 4$)* and jS = i + cos 2nz , checked in g], for (calculating) 
the vertical velocity amplitude together with related solutions of equations of thermal 
conductivity and diffusion yields for ya values close to the exact ones of 1707.8 and 
1802, respectively,(the exact value Y. = 1707.8 for k, = 3.1. is the limit case of pure 
fluid when 33, = 0). 

The integrals appearing in (1.8) in the expressions for Yo- Y and Y, are: 
1) for fl = (1 - 429s 

128 
[j, j] =z’ If) P -Wfl ;t g (k* + 24k: + 504) [j, (0% -k3j]=-$(12+kz) 

If. q = G {k”(kP - 12kZ + 504) + 5040 (12 + k2) [Gk - (12 + k*) :hl/zk]} 

128k-f’ 
[z,, rr] = 315 {k (k8 - 24k0 + 4914k* + 362 880) + (12 + kz) (k + 4sik) (1 + chk)-x + 

+ 20 160 (12 + k*) [6k - (18 + k2) Ui ‘/zk]) 

2) for fa = 1 + ~0s 23~~ 

If, fl =*/se If* (P- k*)% j] = sf*k” + 4n3k* -i_ 85x4, [j, (lP - kp) f] = - ‘12 (3k2 + 4ne) 

[f, r,J = I- (4+), jf- th %k + ++ 

[T3’ ZJ = 1 - 
64~~~ WC* + k9 + th 1/2k + 

(4n2 + k*)8 

If the approximate eigenvalues of the problem obtained with the use of these same 
two ap~o~rna~g functions are close to each other, one can reasonably expect that they 
are close. to the exact eigenvalue of the problem. 

First of all, from the condition of coincidence of the point of intersection of straight 
lines defined by (1.8) with the point at which w = 0 is satisfied, we obtain at the bifur- 
cation point YY1-l = 1707.8 for k, = 3.1 (using j,) and 1802 for ko = 3.1 (using js) 
(this follows, also, from the fact that wlS1 = y. and that at the bifurcation point it is 
equal to the value taken along the monotonic branch of stability). 

The oscillatory Rayleigh number R ($) (k)caIculaEed by Eq,@.l) or (3.2) as a function 
of k with js as the approximating function is represented by a smooth curve with a sin- 
gle minimum at k, = 3.i for all values of parameters P,, P,, Rcr a,. 

Values of the oscillatory instability criterion R$?) and of periodicity in the horizontal 
plane k‘, calculated by the second of Eqs. (2.1) with fr as the appro~ma~ng fuuction are 
close to those calculated with .ja as the trial function (Fig. 1) ( *). 

l ) In all diagrams the results of calculations with j1 and &. taken as the approximating 
functions are shown by solid and hatched lines respectively. 
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However, in spite of the closeness criterions obtained with functions f1 and fi, the 

Values of y and y1 in (1.8) and the critical frequencies o vary considerably. Thus for 
P,=l, P,=Zandk,= 3.1wehave: 

for fl = (1 - 4~~)~ 
(0) 

‘) = -122.56, y1 = -0.072, 02 = 0.062 for TJ, = 6000 

02 = 0.119 for R, = IO&O0 

for fs = 1 + cos 2nz 

y = 1.937,’ . 
(0) 

yI = 0.00107, O’L = 108.35 for R, = 6000 

o2 = 253.98 for RJP)= 10,000 

It should be noted here that the curve of R$?‘(k) calculated with ft (as distinct fromk) 
as the trial function has an additional minimum which, for any values of parameters P, 
and Pi, and k = 3.5 (the same for various values of parameters), appears at some distance 
from the bifurcation point and deepens with increasing distance from that point. For high 

values of parameters this minimum is deeper than the primary one at k = k,. In the 

neighborhood of this minimum function R, (O)(k) becomes discontinuous (for P, = 1, 
P, i 0.1, R(t) = 10 000 and for k = 3.4 function R(TO) (k) undergoes a change of the 

order of twenty). Furthermore, for P, < P, = 1 at high R(E) the minimum k, tends, 

to decrease with increasing distance from the bifurcation point along the oscillation 
branch (thus when P, = 0.2 and II(,“) = 104, then k, = 2.7) . Since P, and P, are sym- 

metric in the criterion, all this holds. also, in the opposite case. 

Similar results are obtained for the criterion of oscillatory instability by (3.2) with ii, 
as the trial function, Furthermore here, owing to the considerable difference between 

the value of y calculated with fl as the trial function and that calculated with fz, the 
position of the asymptote of the oscillatory instability branch is substantially affected 
(see Fig. 2). 

On the basis of calculations presented here it is possible to come to the conclusion 
that the Bubnov-Galerkin method, when used for computing the criterion of oscillatory 

instability, necessitates an even more careful selection of the approximating function 

than in the case of monotonic instability. As shown on the example of an unfortunate 

choice of the approximating function (fr = (l-4$)2), although yielding a good approx- 
imate value of the criterion, leads in many cases to considerable errors in the calculation 

of 7, ~1 and oz. 
The author thanks M Sh. Giterman for his interest in this work and to G. 2. Gershuni 

for discussing this problem and for his valuable remarks. 
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